RAJEEV GANDHI GOVT. POST GRADUATE COLLEGE, AMBIKAPUR, SURGUJA (CG), INDIA

Learning Outcomes based Curriculum Framework

FOR

BACHLOUR OF SCIENCE PROGRAMME

IN

MATHEMATICS

SEMESTER SYSTEM

SESSION 2023-2024

VISION

To be a global centre of excellence in mathematics for the growth of science and technology.

MISSION

To provide quality education and research in Mathematics through updated curriculum, effective teaching learning process.

To inculcate innovative skills, team-work, ethical practices among students so as to meet societal expectations.

Programme Outcome

DO 1	Deele Keele le dee	
P0-1	Basic Knowledge	Capable of delivering basic disciplinary
		knowledge gained during the programme.
PO-2	In-depth Knowledge	Capable of describing advanced
		knowledge gained during the programme.
PO-3	Critical thinking and	Capable of analyzing the results critically
	Problem Solving	and applying acquired knowledge to solve
	abilities	the problems.
PO-4	Creativity and	Capable to identify, formulate, investigate
	innovation	and analyze the scientific problems and
		innovatively to design and create
		products and solutions to real life
		problems.
PO-5	Research aptitude and	Ability to develop a research aptitude and
	global competency	apply knowledge to find the solution of
		burning research problems in the
		concerned and associated fields at global
		level.
PO-6	Holistic and	Ability to gain knowledge with the holistic
	multidisciplinary	and multidisciplinary approach across the
	education	fields.
PO-7	Skills enhancement	Learn specific sets of disciplinary or
		multidisciplinary skills and advanced
		techniques and apply them for betterment
		of mankind.
PO-8	Leadership and	Ability to learn and work in a groups and
	Teamwork abilities	capable of leading a team even.
PO-9	Environmental and	Learn important aspects associated with
	human health	environmental and human health. Ability
	awareness	to develop eco-friendly technologies.
PO-10	Ethical thinking and	Inculcate the professional and ethical
	Social awareness	attitude and ability to relate with social
		problems.
PO-11	lifelong learning skills	Ability to learn lifelong learning skills
	and Entrepreneurship	which are important to provide better
		opportunities and improve quality of life.
		Capable to establish independent
		startup/innovation center etc.

Graduate Attributes in Mathematics

The graduate attributes in mathematics are the summation of the expected course learningoutcomes mentioned in the beginning of each course.

 Disciplinary knowledge: Capability of demonstrating comprehensive knowledge of mathematics and understanding of one or more disciplines which form a part of an undergraduate programme of study.

2.Communications skills:

- Ability to communicate various concepts of mathematics effectively using examplesand their geometrical visualizations.
- ii. Ability to use mathematics as a precise language of communication in other branchesof human knowledge.
- iii. Ability to communicate long standing unsolved problems in mathematics.
- iv. Ability to show the importance of mathematics as precursor to various scientificdevelopments since the beginning of the civilization.
- v. Ability to explain the development of mathematics in the civilizational context and its role as queen of all sciences.

3. Critical thinking and analytical reasoning:

- i. Ability to employ critical thinking in understanding the concepts in every area ofmathematics.
- ii. Ability to analyze the results and apply them in various problem appearing indifferent branches of mathematics.

4. Problem solving:

- i. Capability to solve problems in computer graphics using concepts of linear algebra.
- ii. Capability to solve various models such as growth and decay models, radioactive decay model, drug assimilation, LCR circuit & population models.

- iii. Ability to solve linear system of equations, linear programming problems and network flow problems.
- iv. Ability to provide new solutions using the domain knowledge of mathematics

5. Research-related skills

- i. Capability for inquiring about appropriate questions relating to the concepts in various fields of mathematics.
- ii. To know about the advances in various branches of mathematics.

6. Self-directed learning:

Ability to work independently and do in-depth study of various notions of mathematics.

7. Moral and ethical awareness/reasoning:

Ability to identify unethical behaviour such as fabrication, falsification or misrepresentation of data and adopting objective, unbiased and truthful actions in allaspects.

8. Lifelong learning:

Ability to think, acquire knowledge and skills through logical reasoning and to inculcate the habit of self-learning.

Programme Specific Outcomes

The post graduates shall be able to realise the following specific outcomes by the end of program studies: On successful completion of the M.Sc. Mathematics programme a student

PSO-1	Will have a strong foundation in both pure and applied mathematics.
PSO-2	Will be able to apply mathematical skills for solving problems and for preparing various competitive exams.
PSO-3	Will be able to communicate mathematical knowledge effectively, in writing as well as orally.
PSO-4	Will identify applications of mathematics in other disciplines, leading to enhancement of career prospects in different fields and research areas.
PSO-5	Will have basic knowledge of programming and computational techniques as required for employment.
PSO-6	Should have the knowledge of the fundamental axioms in mathematics and capability of developing ideas based on them and inculcate mathematical reasoning.
PSO-7	Will be able to locate and analyse the different mathematical texts with appropriate theoretical framework.
PSO-8	Have the knowledge of a wide range of mathematical techniques and application of mathematical methods/tools in science, social science, engineering and technology.
PSO-9	Should be able to develop analytical skills, critical thinking, creativity, communication and presentation skills through assignments, seminar, project work.
PSO-10	Should be able to apply their skills and knowledge that translate information presented verbally into mathematical form, select and use appropriate mathematical formulae or techniques in order to process the information and draw the relevant conclusion.

The B. Sc. programme is a three-year course divided into six-semesters. The syllabus and schemes of examination are detailed herewith.

The B.Sc. Mathematics Programme would make the students competent in the field of Mathematics and help them understand its role in modern day technology. Overall, the course would enable the students to understand the fundamental concepts. Knowledge gained through the open electives would be an asset in branching out in fields other than mathematics..

In I/II/III/IV/V/VI semester there shall be two theory paper each of 70 marks and 30 marks for internal assessment test. In internal assessment, there will be 10 marks for written test, 10 marks for assignment and 10 marks for a seminar in each paper.

Thus there shall be T/I=100 marks for each paper, minimum passing / qualifying marks shall be 36% in each theory/internal assessment. Candidate will be required to pass separately in each theory and internal assessment.

Courses and Course Code under Old UG Programme

Semester	code	Course Title
First	UD5-101	Calculus and Algebra I
Second	UD5-102	Calculus and Algebra II
Third	UD5-201	Advanced Calculus and Differential Equations-I
Fourth	UD5-202	Advanced Calculus and Differential Equations-II
Fifth	UD5-301	Analysis And Abstract Algebra-I
Sixth	UD5-302	Analysis And Abstract Algebra-II
Sixth(Opt.)	UD5-303	Programming in C and Numerical Analysis(Optional)

B.Sc. Semester I Calculus and Algebra I Course Outcome

Students are able to

1. To understand the ideas and concept of calculus and facility in solving standard examples.

2. To understand the ideas of limits and continuity and an ability to calculate with them and apply them for functions of one variable.

3. To solve problem using expansion of functions.

4. To understand the concepts of algebra and trigonometry.

5. To acquire techniques in solving equations with the help of theory of equations.

6. To understand the ideas of vector analysis and geometry in solving standard examples.

7. To be familiar with physical interpretation of divergence and curl of a vector.

	CO1	CO ₂	CO ₃	CO ₄	CO ₅	CO ₆	CO7
PO ₁	\checkmark	\checkmark	\checkmark	\checkmark	✓	✓	\checkmark
PO ₂	✓	\checkmark	\checkmark		✓	✓	\checkmark
PO ₃	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark
PO ₄	✓	\checkmark	\checkmark	✓	✓	✓	\checkmark
PO ₅				✓			
PO ₆	\checkmark	✓				\checkmark	\checkmark
PO ₇					✓		
PO ₈	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark
PO ₉			\checkmark				
PO ₁₀	\checkmark	\checkmark		\checkmark		✓	\checkmark
PO ₁₁						\checkmark	

B.Sc. (MATHEMATICS) SEMESTER I								
COUF	RSE TITLE: Calcul	us and Algebra I						
	RSE CODE: UD5-1	01	COURSE TYPE: CCC					
Credi			Hours-90hrs					
	Theory-6	Practical-0	Theory-90 Practical-0					
		Mar						
	Theory-(70+30) Practical-0							
Sche	me of Marks:							
i.			stions carrying 1 marks each to be asked					
	10 to be atte	-						
ii.			estions carrying 3 marks each to be set					
		ttempted (Word limit 10	2					
iii.			uestions carrying 6 marks each to be set					
		ttempted (Word limit 25						
iv.	0		estions carrying 11 marks each to be set					
	three to be at	ttempted (Word limit 75	0 words).					
Н		ε – δ definition of the li	mit of a function. Basic properties of					
Unit]	s.	limits, Continuity and c	lassification of discontinuities,					
0 ¹	18 hrs	Differentiability, Succe	ssive differentiation, Leibnitz theorem					
		5	series expansions, Asymptotes,					
	10	2	cavity and convexity. Point of inflexion.					
it l	hrs		g of curves in Cartesian and polar co-					
Unit II	18hrs	ordinates.	g of curves in cartesian and polar co					
Ι			nd its applications. Direct and inverse					
t II	Irs	51	c functions. Logarithm of a complex					
Unit III	18 hrs	quantity. Expansion of	trigonometry functions.					
n	\leftarrow							
		Relation between the r	oots and coefficients of general					
		polynomial equations i	n one variable .Transformation of					
IV	S		ule of signs, Solutions of cubic					
Unit IV	18hrs	· ·	hod), Solution of biquadratic equation(
Un	Ferari method)							
		· · · · · · · · · · · · · · · · · · ·	d Vector integration, Directional derivative,					
~	S		Curl, Solenoidal and Irrotational vector,					
Unit V	18 hrs		reen ,Stokes(without proof) and problems					
Un	18	based on these theorems						
		based on these theorems	•					

REFERENCES:

- 1. Gorakh Prasad: Differential Calculus, Pothishalas Pvt Ltd, Allahabad.
- 2. Khalil Ahmad: Text Book of Calculus, World Edu. Pub., 2012. Int.(P) Ltd. Pub.
- 3. I. N. Herstein: Topics in Algebra, Wiley; 2nd edition (June 20, 1975).
- 4. P.B. Bhattacharya, S. K. Jain and S. R. Nagpal: First course in Abstract Algebra.
- 5. K. B. Datta: Matrix and Linear Algebra.
- 6. J. Finkbecner: Matrix theory.
- 7. S. Singh, Modern Algebra, Vikas Publ. House, India.

B.Sc. Semester II Calculus and Algebra II Course Outcome

Students are able to

- 1. To solve problem related to definite integral.
- 2. To able to familiar with curve tracing
- 3. To make the student acquire sound knowledge of techniques in solving

differential equations.

- 4. To understand the concepts of algebra.
- 5. To be familiar with group theory, ring, integral domain, field and make their fundamental strong.

	CO1	CO ₂	CO ₃	CO ₄	CO ₅
PO ₁	✓	\checkmark	\checkmark	\checkmark	✓
PO ₂	\checkmark	✓	\checkmark		✓
PO ₃	\checkmark	\checkmark	\checkmark	\checkmark	✓
PO ₄	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₅				\checkmark	
PO ₆	✓	\checkmark	\checkmark	\checkmark	✓
PO ₇					✓
PO ₈	\checkmark	\checkmark	\checkmark		
PO ₉			\checkmark		\checkmark
PO ₁₀	\checkmark	\checkmark		\checkmark	
PO ₁₁			\checkmark	\checkmark	\checkmark

B.Sc. (MATHEMAT	1(5)	SEMESTER I	I				
	lculus and Algebra II	JEMESIEK I	1				
COURSE CODE: U							
Credit -6 Hours-90hrs							
Theory-6	Practical-0	Theory-90	Practical-0				
Marks							
Tl	neory-(70+30)	Pra	ctical-0				
i. Objective type be attempted	Scheme of Marks:i. Objective type questions: Twelve questions carrying 1 marks each to be asked 10 to be attempted.						
to be attemp iii. Middle answe to be attempt iv. Long answer	type questions: Five quest ted (Word limit 100 words) tr type questions: Five quest ed (Word limit 250 words). type questions: Three quest attempted (Word limit 750 v	tions carrying 6 marks tions carrying 11 mar	s each to be set three				
Unit I 18 hrs	Definite integrals. Quadrated of solids of revolution.	ture. Rectification . Vo	olumes and surfaces				
Unit II 18hrs	Differential equations of fi differential equations. Exa higher degree equations, equation. Orthogonal traje constant coefficients. Hom equations.	act differential equation Geometrical meaning ectories. Linear different nogeneous linear ordin	ons. First order and of differential ential equations with nary differential				
Unit III 18 hrs	Linear differential equation equation by changing the of variation of parameters equations.	dependent & indepen	dent variable, Method				
Unit IV 18hrs	Mapping , Equivalence relations and partitions, Congruence modulo n. Definition of a group with examples and simple properties, Subgroup , algebra of subgroups , Cyclic groups, Order of a group, Coset De composition, Lagrange's Theorem (only for finite group) and its consequences. Permutation groups, Even and odd permutations ,The alternating groups A _n , Cayley's theorem						
Unit V 18 hrs	Homomorphism and is Normal Subgroup,Quoti Homomorphism,Isomorph	comorphism,Kernelof ent group, Fundan nism theorem for g perties of ring	a Homomorphism, nental theorem of roups,Definition with				

Reference:

1.Gorakh Prasad: Integral Calculus, Pothishalas Pvt Ltd, Allahabad.

2.Shanti Narayan: Integral Calculus, S. Chand & Co.

3. S.Balachandra Rao &H.R.Anuradha,DE with App and Programmes, Uni. Press,Hyderabad.

4.R.S.Senger, Ordinary Differential Equations with Integration, Prayal Publ. 2000.

B.Sc. Semester III

Advanced Calculus and Differential Equations-I

Course Outcome

Students are able to

- 1. To gain proficiency in calculus computations.
- 2. To gain knowledge of sequences, series and their convergence.
- 3. To understand the ideas of limits and continuity and an ability to calculate with them and apply them for functions of two variables.
- 4. To acquire knowledge of techniques insolving partial differential equations.
- **5.** To understand the ideas of Legendre, Bessel equations in solving standard differential equations and apply them.
- 6. To understand the ideas of differential equation and facility in solving standard equations.
- 7. To get knowledge about the Laplace and inverse Laplace transform.
- 8. To familiarize the student with the applications of Laplace transformation in solving linear differential equations.

	CO ₁	CO ₂	CO ₃	CO ₄	CO ₅	CO ₆	CO ₇	CO ₈
P01	\checkmark							
PO ₂	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
PO ₃	\checkmark							
PO ₄	\checkmark							
PO ₅				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₆	\checkmark	\checkmark						
PO ₇					\checkmark			
PO ₈	\checkmark	\checkmark	\checkmark					
PO ₉			\checkmark				\checkmark	\checkmark
PO ₁₀	\checkmark	\checkmark		\checkmark				\checkmark
PO ₁₁	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		

B.Sc.	(MATHEN	ATICS) SEN	IESTER	III			
		E: Advanced Calculus And Differential E					
COURSE CODE: UD5-201 Credit -6 Hours-90hrs							
	n -o Theory-6	Practical-0 Theory-90	1	Practical-0			
	Theory o	Marks		Tractical o			
		Theory-(70+30)	Pract	ical-0			
	eme of Ma						
i.		ve type questions: Twelve questions carryin	ıg 1 ma	rks each to be asked			
ii.		e attempted. Inswer type questions: Five questions carr	ving 2	marks aach to ho sot			
11.		o be attempted (Word limit 100 words).	ying 5	IIIdi KS edtli to be set			
iii.		answer type questions: Five questions carr	ving 6	marks each to be set			
		o be attempted (Word limit 250 words).					
iv.		swer type questions: Three questions carryi	ng 11 n	narks each to be set			
	three t	be attempted (Word limit 750 words).					
		Definition of coquence Theorems of limits	of com	uonaa Doundad ard			
		Definition of sequence. Theorems of limits monotonic sequences. Cauchy's convergence					
		negative terms.Comparison tests.Cauchy's int					
Ι	rs	logarithmic, de-Morgan and Bertrand's test					
Unit I	l8 hrs	theorem. Absolute and conditional convergence		0			
Ŋ	18						
		Continuity. Sequential continuity. Properties o					
		Uniform continuity. Chain rule of differentiabil	-				
it I	hrs	their geometrical interpretations. Darboux's &					
Unit II	18hrs	for derivatives. Taylor's theorem with various	IOT IIIS O	i remanuers.			
		Limit and continuity of functions of two variab	les Part	ial differentiation			
III	IS	change of variables. Euler's theorem on homog					
Unit III	18 hrs	theorem for two variables. Jacobians.		····			
Ŋ	18						
1		Series solutions of differential equations.Powe	r series	method.Bessel and			
t IV	Irs	Legendre function and their properties, recurre					
Unit IV	Legendre function and their properties, recurrence and generating relations. Orthogonality of functions. Sturm - Liouville problem.						
	Laplace transformation, Linearity of the Laplace transformation. Existence theorem for Laplace transforms.Laplace transforms of derivatives &						
		integrals.Shifting theorems.Differentation	and				
>	IS	transforms.Convolution theorem.Solution of in		6			
Unit V	18 hrs	of differential equations using the Laplaces tra	•				
Ŋ	Ä						
REFERENCES:1 Corach Prasad: Differential Calculus, Pothishalas, Pyt Ltd, Allahahad							

<u>REFERENCES</u>: 1.Gorakh Prasad: Differential Calculus, Pothishalas Pvt Ltd, Allahabad.

2.Shanti Narayan: Differential Calculus, S. Chand & Co. New Delhi

3.Shanti Narayan: Integral Calculus, S. Chand & Co. New Delhi

B.Sc. Semester IV Advanced Calculus and Differential Equations-II

Course Outcome

Students are able to

- 1. To gain proficiency in calculus computations.
- 2. To acquire knowledge of techniques in solving partial differential equations.
- 3. To understand the ideas of differential equation and facility in solving standard equations.
- 4. To get knowledge about the Laplace and inverse Laplace transform.
- 5. To familiarize the student with the applications of calculus of variation in solving differential equations.
- 6. To acquire knowledge of techniques in solving partial differential equations.

	CO ₁	CO ₂	CO ₃	CO ₄	CO ₅	CO ₅
PO ₁	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₂	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
PO ₃	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO_4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO_5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
P06	\checkmark	\checkmark				
P07					\checkmark	\checkmark
PO ₈	\checkmark	\checkmark	\checkmark			
PO ₉			\checkmark			
PO ₁₀	\checkmark	\checkmark		\checkmark		
PO ₁₁	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

B.Sc. (MATHEMATICS) SEMESTER IV				
COURSE TIT	FLE: Advanced Calculus and I	Differential Equatio	ns-II	
COURSE CODE	: UD5-202			
Credit -6			s-90hrs	
Theory-6		Theory-90	Practical-0	
	Mar		the l	
Scheme of Ma	Theory-(70+30)	Prac	tical-0	
	type questions: Twelve questic	ons carrying 1 marks	each to be asked 10	
to be atte		V 0		
ii. Short ans	wer type questions: Five ques	tions carrying 3 mark	s each to be set three	
to be atte	empted (Word limit 100 words).		
	swer type questions: Five ques		ks each to be set	
	e attempted (Word limit 250 v			
	wer type questions: Three ques		rks each to be set	
three to	be attempted (Word limit 750	words).		
	Envelopes, Evolutes, Maxima	Minima and saddle n	oints of functions of	
Unit I 18 hrs	two variables. Lagrange's mult		onnes of functions of	
Un 18				
	Beta and Gamma functions, Do	uble and triple integral	ls, Dirichlet's integral.	
Unit II 18hr s	Change of Order of integration	in double integrals		
	Partial differential equations of	f the first order Lagran	ge's solution Some	
=	special types of equations which	6	0	
Unit III 18 hrs	the general method. Charpit's	-	-	
Un 18		8		
	Partial differential equation of	second and higher orde	ers. Classification of	
	linear partial differential equat	5		
2 %	-homogeneous equations with	constant coefficients. P	artial differential	
Unit IV 18hrs	equation reducible to equation	s with constant cofficie	nt. Monge's methods	
17 N				
	Calculus of Variations: Variation			
	equations for functionals conta	0		
	independent varialbe. Extrema	-	5	
	derivatives. Functionals depen		-	
	Variational problems in param under coordinates transformat		-	
	boundries,functions.One sided			
	extremum .Jacobi and Legendr			
Unit V 18 hrs	least action.		rational principie of	
Un 18				

Reference-

- 1. Zafar Ahsan: Text Book of Differential Equations and their Applications, PHI
- 2. Khalil Ahmad: Text Book of Differential Equations, World Education Publishers, .
- 3. A.S. Gupta: Calculus of variations with applications, Prentice Hall of India, 1997
- 4. I.N. Sneddon: Elements of Partial Differential Equations, McGraw Hill Company,

B.Sc. Semester V Analysis And Abstract Algebra-I

Course Outcome

Students are able to

- 1. To gain proficiency in computation of real analysis.
- 2. To understand the concept of real analysis and series.
- 3. To understand the idea of complex analysis and ability to calculate with them.
- 4. To develop aspect of Linear transformation & Jordan form.
- 5. Distinguish the concept of Homomorphism, Automorphism & Isomorphism,

	CO ₁	CO ₂	CO ₃	CO_4	CO ₅
PO ₁	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO_2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₃				\checkmark	\checkmark
PO ₄	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₅	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO_6	\checkmark	\checkmark			
P07					\checkmark
PO ₈	\checkmark	\checkmark	\checkmark		
PO ₉			\checkmark		
PO ₁₀	\checkmark	\checkmark		\checkmark	
PO ₁₁	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

B.Sc. (MATHEMATICS) SEMESTER V				
Course Title: Analysis And Abstract Algebra-I				
COURSE CODE: UD5-301				
Credit -6		Hours-90hrs		
Theory-6 Practical-0		Theory-90 Practical-0		
		rks		
	Theory-(70+30)	Practical-0		
 Scheme of Marks: i. Objective type questions: Twelve questions carrying 1 marks each to be asked 10 to be attempted. ii. Short answer type questions: Five questions carrying 3 marks each to be set three 				
 to be attempted (Word limit 100 words). iii. Middle answer type questions: Five questions carrying 6 marks each to be set three to be attempted (Word limit 250 words). iv. Long answer type questions: Three questions carrying 11 marks each to be set three to be attempted (Word limit 750 words). 				
Unit I 18 hrs	Series of arbitrary terms. Convergence, divergence and oscillation. Abel's and Dirichlet's tests. Multiplication of series. Double series. Partial derivation and Differentiability of real valued functions of two variables. Schwartz and Young's theorem.Implicit function theorem.Fourier series.Fourier expansion of piece wise monotonic functions.			
Unit II 18hrs	Riemann integral. Integrability of continuous and monotonic function. The fundamental theorem of integral calculus. Mean value theorems of integral calculus. Improper integrals and their convergence. Comparison tests, Abel's and Dirichlet's tests.			
Unit III 18 hrs	Complex numbers as ordered pairs.,continuity & differentiability of complex functions. Analytic functions. Cauchy- Riemann equations. Harmonic functions. Elementary functions. Mapping by elementary functions. Mobius Transforms, Conformal mapping			
Unit IV 18 hrs	Definition and examples of vector spaces. Subspaces. Sum and direct sum of subspaces. Linear span. Linear dependence, independence and their basic properties. Basis. Finite dimensional vector spaces. Existence theorem for bases. Invariance of thenumber of elements of a basis set. Dimension.			
Unit V 18 hrs	Linear transformations and their representation as matrices. The Algebra of linear transformations. The rank nullity theorem. Change of basis. Dual space. Bidual space and natural isomorphism. Adjoint of a linear transformation. Eigen values and eigen vectors of a linear transformation, Diagonalisation. Annihilator of a sub space. Bilinear, Quadratic and Hermitian forms.			

Reference-

1.R. G. Bartle and D.R. Sherbert, Introduction to Real Analysis 3rd ed, John Wiley and Sons

2.S.C. Malik and Savita Arora: Mathematical Analysis, New Age (P) Ltd. Publishers,

3.Sudhir R Ghorpade and Balmohan V. Limaye, Calculus and Real Analysis, Springer

4.T.M. Apostol: Mathematical Analysis, Addison-Wesley Series in athematics,

1974.5.R.R.Goldberg: Real Analysis, Oxford IBH Publishing , New Delhi, 1970.

B.Sc. Semester VI Analysis and Abstract Algebra-II

Course Outcome

Students are able to

- 1. To gain proficiency in computation of real analysis.
- 2. To understand the concept of real analysis and series.
- 3. Distinguish the concept of Homomorphism, Automorphism & Isomorphism,.
- 4. To introduce the concepts of metric space to the students and to make them understand various familiar concept of real analysis with the help of metric space.
- 5. To understand the concept of compactness and connectedness with respect to metric space and to study some useful properties of continuous function.
- 6. Distinguish the concept of Homomorphism, Automorphism & Isomorphism,
- 7. To understand the concept of Inner Product space, orthganalization & Gram-Schmidt Process.

	CO1	CO ₂	CO ₃	CO ₄	CO ₅	CO ₆	CO ₇
PO ₁	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₂	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
PO ₃	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₄	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₅			\checkmark	\checkmark		\checkmark	\checkmark
P0 ₆	\checkmark	\checkmark					
P07					\checkmark		
PO ₈	\checkmark	\checkmark	\checkmark				
PO ₉			\checkmark			\checkmark	\checkmark
PO ₁₀	\checkmark	\checkmark		\checkmark			
PO ₁₁	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

B.Sc. (MATHEMATICS) SEMESTER VI					
Course Title: Analysis And Abstract Algebra-II					
COURSE CODE: UD5-302					
Credit -6			rs-90hrs		
Theory-6 Practical-0			Theory-90	Practical-0	
	Theor	<u>Ma</u> y-(70+30)		ctical-0	
Scheme of M		y (70130)	114		
		estions: Twelve question	ons carrying 1 marks	each to be asked 10	
to be at					
ii. Short an	swer ty	pe questions: Five ques	tions carrying 3 mark	s each to be set three	
		(Word limit 100 words			
		pe questions: Five que		ks each to be set	
		npted (Word limit 250 v	-	when an als to be set	
		e questions: Three que mpted (Word limit 750		rks each to be set	
unee u	J De alle	inplea (word innit 750	worusj.		
	Definiti	on and examples of metr	ic spaces. Neighborhoo	ds'. Limit points.	
		points. Open and closed			
I rs		nce of a metric space. Cau			
Unit I 18 hrs	interse	ction theorem. Contractio	on principle. Construction	on of Real numbers	
$\stackrel{5}{\rightarrow} \stackrel{{}_{\scriptstyle{\leftarrow}}}{\rightarrow}$ and the completion of the incomplete metric space of rationals. Real n					
		nplete ordered field.			
	Dense subsets.Baire Category theorem.Separable. First countable and sec				
Unit II 18hrs	countable space. Continuous functions. Equivalent metrics. Compactness.				
Jni 18]	Sequential compactness. Totally bounded space. Finite intersection property.				
	Continuous functions and compact sets. Connectedness. Components. Continuous functions and connected sets.				
		Automorphisms, inner au		phism groups and their	
III III		ations. Conjugacy relatio			
Unit III 18 hrs		n of a finite group. Centre			
1 U	group and its universal property. Sylow's theorems. Sylow sub-group.				
		re theorem for finite Abe			
		eory:Ring homomorphisr			
Unit IV 18 hrs	Quotients of an Integral Domain. Euclidean Rings. Polynomial Rings.				
	Polynomials over the Rational Field. The Eisenstein criterion. Polynomial				
U U	Rings over Commutative Rings. Unique factorization domain. R unique				
factorization domain implies so is $R(x_1, x_2,, x_n)$ Modules, sub-modules.					
Quotients modules. Homomorphism and Isomorphism Theorems.Inner Product Spaces: Cauchy Schwarz inequality.Orthogonal complements.					
Unit V 18 hrs		onal sets and bases. Bess			
Jni 8 h	0	chmidt Orthogonalization	I P	e annensional spaces.	
1 [1		

Reference-

1 I. N. Herstein: Topics in Algebra, Wiley; 2nd edition (June 20, 1975).

2 P.B. Bhattacharya, S. K. Jain and S. R. Nagpaul: First course in Abstract

algebra Cambridge Univ. Press .3 K. B. Datta: Matrix and Linear Algebra. PHI, New Delhi.

B.Sc.	(MATHE	MATICS)	SE	EMESTER VI
		amming in C and Nun	nerical Analysis(Op	tional)
COURSE COD	E: UD5	-303	<u> </u>	-
Credit -6			rs-90hrs	
Theory	Theory-6 Practical-0		Theory-90	Practical-0
			irks	
		y-(70+30)	Pra	ctical-0
 Scheme of Marks: i. Objective type questions: Twelve questions carrying 1 marks each to be asked 10 to be attempted. ii. Short answer type questions: Five questions carrying 3 marks each to be set three to be attempted (Word limit 100 words). iii. Middle answer type questions: Five questions carrying 6 marks each to be set three to be attempted (Word limit 250 words). iv. Long answer type questions: Three questions carrying 11 marks each to be set three to be attempted (Word limit 750 words). 				
Unit I 18 hrs	PROGRAMMING IN C Programmer's model of a computer. Flow charts, Algorithm, Data types, Arithmetic and input/output instructions. Decesions control structure, Decision statements, Logical and conditional operators, Loop , Case Control Structures			
Unit II 18hrs	Functions, Recursions, Preprocessors, Arrays. Puppetling of strings. Structures. Pointers. File formatting.			
Unit III 18 hrs	NUMERICAL ANALYSIS Solution ol Equations : Bisection, Secant, Regula Falsi, Newton's Method, Roots ofPolynomials : Interpolation: Lagarange and Hermite Interpolation, Divided Differences, Difference Schemes, Interpolation Formula using Differences. Numerical Differentialion.Numerical Ouadrature : Newton-Cote's Formulas. Gauss Quadrature Formulas, Chebychev's Formulas.			
Unit IV 18 hrs	Linear Equations : Direct Methods for Solving. Systems of Linear Equations (Guass Elimination, LU Decomposition, Cholesky Decomposition), Iterative Methods (Jacobi, Gauss-Seidel, Relaxation Methods). The Algebraic Eigenvalue problem: Jacobi'sMethod, Givens'Method, Householder's Method, Power Method, QR Method, Lanezos'Method.			
Unit V 18 hrs	Ordinary Differential Equtions : Euler Method, Single-step Methods, Runge-Kutta'sMethod, Multi-step Method's, Milne-Simpson Method, Methods Based on Numerical Integration, Methods Based on Numerical Differentiation, .			

Reference-

1. J.B.Dixit: Programming in C and Numerical Analysis:: Laxmi Publications, New Delhi.

2. S..S..Sastry : Scope as in Introductory Methods of Numerical Analysis,, PHI (4thEd.).

3. G.. ShankarRao: Numerical Analysis, New Age International Publishers, Hyderabad..

4. H..C.. Saxena : Finite Differences and Numerical Analysis , S..Chand and Company,,

5. Venugopal :Mastering C, Tata McGraw Hill Co. Ltd.

6. Kemigham and Ritche: The C Programming Language - [Prentice Hall].

7. M.K. Jain, S.R.K. Iyengar, R.K. Jain, Numerical Methods , New Age International, 1999.

8. S. D. Conte, C de Boor, Elementary Numerical Analysis, McGraw-Hill, 1980.

9. Melvin J. Maron, Numerical Analysis A Practical Approach, Macmillan Publishing

PAPER Opt. (II): PROGRAMMING IN C AND NUMERICAL ANALYSIS (PRACTICAL)

Max. Marks: 30

LIST OF PRACTICAL TO BE CONDUUCTED.

1. Write a program in C to flind out the largest of three integer numbers.

2. Write a program in C that reads a year and determine whether it is a leap year or not.

3. Write a program in C to calculate and print the first n terms of Fibonacci

series usinglooping statement.

4. Write a program in C that reads a number in single digit. It determines whether the Firstnumber contains the digit or not.

5. Write a program in C to generate first n prime numbers.

6. Write a program in C to computes the roots of a quadratic equation using switchstatements.

7. Write a program jn C to check whether a number is odd or even..

8. Write a program in C to find the sum of all the digits of a given number using recursion.

9. Write a program in C to calculate the factorial of a given number using recursion.

10. Write a program in C to calculate and print the multiplication of given 2D matrices.

- 11. Write a program in C to calculate the area of a triangle .
- 12. Write a C program to compute the sum of a given series.
- 13. Write a program in C to determine the grade of all students in the class using Structure.
- 14. Write a program in C to calculate the compound interest.
- 15. Write a program in C to sort an array of integers using a function.
- 16. Write a program in C to calculate and print the addition of given 2D matrices.
- 17. Write a program in C to generate decimal. octal, hexadecimal numbers.
- 18. Write a program in C to generate reverse numbers.
- 19. Write a program in C to generate pyramid of a number.
- 20. Write a program in C to sort a number.
